skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Balogh, Michael_L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT High-redshift ($$z\sim 1$$) galaxy clusters are the domain where environmental quenching mechanisms are expected to emerge as important factors in the evolution of the quiescent galaxy population. Uncovering these initially subtle effects requires exploring multiple dependencies of quenching across the cluster environment, and through time. We analyse the stellar mass functions (SMFs) of 17 galaxy clusters within the GOGREEN and GCLASS surveys in the range $0.8< z<1.5$, and with $$\log {(M/{\rm {M_\odot }})}>9.5$$. The data are fit simultaneously with a Bayesian model that allows the Schechter function parameters of the quiescent and star-forming populations to vary smoothly with cluster-centric radius and redshift. The model also fits the radial galaxy number density profile of each population, allowing the global quenched fraction to be parametrized as a function of redshift and cluster velocity dispersion. We find the star-forming SMF to not depend on radius or redshift. For the quiescent population however, there is $$\sim 2\sigma$$ evidence for a radial dependence. Outside the cluster core ($$R>0.3\, R_{\rm 200}$$), the quenched fraction above $$\log {(M/{\rm {M_\odot }})}=9.5$$ is $$\sim 40{\rm\,\,per\, cent}$$, and the quiescent SMF is similar in shape to the star-forming field. In contrast, the cluster core has an elevated quenched fraction ($$\sim 70{\rm \,\,per\, cent}$$), and a quiescent SMF similar in shape to the quiescent field population. We explore contributions of ‘early mass-quenching’ and mass-independent ‘environmental-quenching’ models in each of these radial regimes. The core is well described primarily by early mass-quenching, which we interpret as accelerated quenching of massive galaxies in protoclusters, possibly through merger-driven feedback mechanisms. The non-core is better described through mass-independent environmental-quenching of the infalling field population. 
    more » « less
  2. ABSTRACT We explore models of massive (>1010 M⊙) satellite quenching in massive clusters at z ≳ 1 using an MCMC framework, focusing on two primary parameters: Rquench (the host-centric radius at which quenching begins) and τquench (the time-scale upon which a satellite quenches after crossing Rquench). Our MCMC analysis shows two local maxima in the 1D posterior probability distribution of Rquench at approximately 0.25 and 1.0 R200. Analysing four distinct solutions in the τquench–Rquench parameter space, nearly all of which yield quiescent fractions consistent with observational data from the GOGREEN survey, we investigate whether these solutions represent distinct quenching pathways and find that they can be separated between ‘starvation’ and ‘core quenching’ scenarios. The starvation pathway is characterized by quenching time-scales that are roughly consistent with the total cold gas (H2 + H i) depletion time-scale at intermediate z, while core quenching is characterized by satellites with relatively high line-of-sight velocities that quench on short time-scales (∼0.25 Gyr) after reaching the inner region of the cluster (<0.30 R200). Lastly, we break the degeneracy between these solutions by comparing the observed properties of transition galaxies from the GOGREEN survey. We conclude that only the ‘starvation’ pathway is consistent with the projected phase-space distribution and relative abundance of transition galaxies at z ∼ 1. However, we acknowledge that ram pressure might contribute as a secondary quenching mechanism. 
    more » « less